The Effect of Addition of Coral as a Stabilizing Material to the Value of Soil Bearing Capacity


Alfian Adie Chandra


The type of clay that is very sensitive to changes in water content because it can cause changes in the volume of the soil is also known as expansive soil. The comprehensive nature of the soil is identical to the swelling potential of the soil. The potential for development on the soil can also be a problem in the subgrade layer of the road, which will later have a low carrying capacity or CBR value, causing issues on the road. This study aims to increase the carrying capacity of the soil by using coral from Arso 1 and quicklime, using five different grain sizes and using an additional composition of 10% of the original soil weight in each test, in the form of testing the Arterberg limits, standard proctor compaction, and CBR testing. The use of coral helps improve the quality shown to reduce the plastic index, increase soil density and CBR values ​​in the subgrade layer of roads.


How to Cite
Chandra, A. A. (2021). The Effect of Addition of Coral as a Stabilizing Material to the Value of Soil Bearing Capacity. Enrichment : Journal of Management, 12(1), 158-162. Retrieved from


[1] Ankit, S. N., & M, Faizan, D. P. (2013). Soil Stabilizing Using Lime. India.
[2] Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169-193.
[3] Bjørn, A., & Hauschild, M. Z. (2015). Introducing carrying capacity-based normalisation in LCA: framework and development of references at midpoint level. The International Journal of Life Cycle Assessment, 20(7), 1005-1018.
[4] Brand, A. S., Singhvi, P., Fanijo, E. O., & Tutumluer, E. (2020). Stabilization of a clayey soil with ladle metallurgy furnace slag fines. Materials, 13(19), 4251.
[5] Cui, M., Lee, Y., Choi, J., Kim, J., Han, Z., Sun, Y., & Khim, J. (2018). Evaluation of stabilizing materials for immobilization of toxic heavy metals in contaminated agricultural soils in China. Journal of Cleaner Production, 193, 748-758.
[6] Fisher, L. V., & Barron, A. R. (2019). The recycling and reuse of steelmaking slags—A review. Resources, Conservation and Recycling, 146, 244-255.
[7] Hary, C. (2007). Mekanika Tanah II Edisi Keempat. Yogyakarta: Gadjah Mada University Press.
[8] Hary, C. (2007). Stabilisasi Tanah. Yogyakarta: Gadjah Mada University Press. Menggunakan Kapur Terhadap Nilai CBR. Pekanbaru.
[9] Hary, C. (2011). Perencanaan Perkerasan Jalan Dan Penyelidikan Tanah. Yogyakarta: Gadjah Mada University Press.
[10] Kalkan, E. (2020). A Review on the Microbial Induced Carbonate Precipitation MICP for Soil Stabilization. International Journal of Earth Sciences Knowledge and Applications, 2(1), 38-47.
[11] Lee, Y., Cui, M., Song, Y., Ma, J., Han, Z., & Khim, J. (2021). Evaluation of stabilizing material and stabilization efficiency through comparative study of toxic heavy metal transfer between corn and peanut grown in stabilized field soil. Environmental Pollution, 275, 116617.
[12] M, Jibril. (2015). Kajian Eksperimental Kuat Tekan Dan Elastisitas Campuran Kapur Dan Tanah Lempung. Makassar.
[13] Ninik, A., & Ana, Y. (2014). Pengaruh Penambahan Kapur Pada Tanah Lempung Ekspansif Dari Dusun Bodrorejo Klaten. Yogyakarta.
[14] Pamuttu, D. L., & Betaubun, P. (2018). Ant nest (Musamus) as an additional material of engineered soil stabilisation using soil cement. International Journal of Civil Engineering and Technology (IJCIET), 9(12), 918-925.
[15] Soehardi, F., & Putri, L. D. (2017). Pengaruh Waktu Pemeraman Stabilisasi Tanah Menggunakan Kapur Terhadap Nilai CBR. Siklus: Jurnal Teknik Sipil, 3(1), 1-9.
[16] Tao, G., Yuan, J., Chen, Q., Peng, W., Yu, R., & Basack, S. (2021). Chemical stabilization of calcareous sand by polyurethane foam adhesive. Construction and Building Materials, 295, 123609.