Customer profiling with k-means clustering and product recommendation with market basket analysis for strategy marketing MSMEs


Ahmad Al Ayubi
Hendra Achmadi
Hendra Achmadi


This research aims to develop a data-driven marketing strategy to increase consumer purchase interest in XYZ Hijab. This small and medium-sized Muslim fashion enterprise experienced a sales decline of 65.2% in 2022 and 2023. Utilizing the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology and employing Python programming language with Google Colab, this study combines RFM-D analysis and K-means clustering for customer segmentation, as well as Market Basket Analysis (MBA) for product bundling strategies. The study uses sales transaction data from December 9, 2023, to January 8, 2024. The analysis results indicate that the optimal RFM-D model uses four customer clusters: Superstar Customers (50.37%), Golden Customers (31.92%), Typical Customers (17.65%), and Dormant Customers (0.06%). The MBA identifies 11 product association rules that can be utilized for bundling strategies. The recommended marketing strategies include exclusive loyalty programs for top customers and tailored promotions for potential and dormant customers. Implementing these strategies will increase customer retention and revenue for XYZ Hijab.


How to Cite
Al Ayubi, A., Achmadi, H., & Achmadi, H. (2024). Customer profiling with k-means clustering and product recommendation with market basket analysis for strategy marketing MSMEs. Enrichment : Journal of Management, 14(2), 298-309.


Agustino, D. P., Harsemadi, I. G., & Budaya, I. G. B. A. (2022). Edutech Digital Start-Up Customer Profiling Based on RFM Data Model Using K-Means Clustering. Journal of Information Systems and Informatics.
Albab, M. U., & Hidayatullah, D. (2022). Penerapan Algoritma Apriori Pada Sistem Informasi Inventori Toko. Jurnal Media Informatika Budidarma.
Amna, Wahyuddin, Sudipa, I. G. I., Putra, T. A. E., Wahidin, A. J., Syukrilla, W. A., Wardhani, A. K., Heryana, N., Indriyani, T., & Santoso, L. W. (2023). Data MInning (1st ed.). PT Global Eksekutif Teknologi.
Brick. (2023). Inilah Pentingnya Data Transaksi bagi Perusahaan Bisnis. Https://Www.Onebrick.Io/Blog/Data-Transaksi.
Bui, M. A., & Bahtiar, A. (2024). Implementasi Metode Algoritma K-Means Clustering Untuk Mengelompokkan Transaksi Penjualan Barang Di Toko Arino. Jurnal Mahasiswa Teknik Informatika.
Christy, A. J., Umamakeswari, A., Priyatharsini, L., & Neyaa, A. (2021). RFM Ranking –An Effective Approach to Customer Segmentation.
Data Boks. (2023, October 11). 5 E-Commerce dengan Pengunjung Terbanyak di Indonesia (Januari-Desember 2023). Https://Databoks.Katadata.Co.Id/Datapublish/2024/01/10/5-e-Commerce-Dengan-Pengunjung-Terbanyak-Sepanjang-2023.
Humaira, H., & Rasyidah, R. (2020). Determining The Appropriate Cluster Number Using Elbow Method for K-Means Algorithm.
Ikotun, A. M., Ezugw, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-Means Clustering Algorithms: A Comprehensive Review, Variants Analysis, And Advances in The Era Of Big Data. Information Sciences.
Imani, A., Abbasi, M., Ahang, F., Ghaffari, H., & Mehdi, M. (2022). Customer Segmentation to Identify Key Customers Based on RFM Model by Using Data .
International Data Corporation. (2023). How Asia Buys and Pays 2023: Tapping into Asia’s Regional Commerce Opportunities. International Data Corporation.
International Trade Administration. (2024, January 9). Indonesia - Country Commercial Guide. Https://Www.Trade.Gov/Country-Commercial-Guides/Indonesia-Ecommerce.
Kumar. V, & Reinartz, W. (2012). Customer Relationship Management: Concept, Strategy, and Tools. Springer.
Liu, R., Lee, Y., & Mu, H. (2018). Customer Classification and Market Basket Analysis Using K-Means Clustering and Association Rules: Evidence from distribution big data of Korean retailing company.
Lubis, A. H., Utami, W. R., & Lubis, J. H. (2023). Implementation of K-means Clustering For The Job Provision in Urban Village.
McCue, C. (2007). Data Mining and Predictive Analysis Intelligence Gathering and Crime Analysis. Elsevier.
Mintardjo, B. H. (2022). Peran Orientasi Pelanggan Departemen Sales dan Marketing dalam Meningkatkan Pendapatan di Petit Boutique Hotel Solo.
Mulyo, I. A., & Heikal, J. (2022). Customer Clustering Using The K-Means Clustering Algorithm in Shopping Mall in Indonesia.
Olson, D. L., & Delen, D. (2008). Advanced Data Mining Techniques. Springer Berlin.
Pahwa, B., Taruna, S., & Kasliwal, N. (2017). Role of Data Mining in Analyzing Consumer’s Online Buying Behavior. International Journal of Business and Management Invention.
Rao, K. R., Garg, S., & Montgomery, J. (2018). Investigation of unsupervised models for biodiversity assessment.
Shaliha, K. M., Angelyna, A., Nugraha, A. A., Wahisyam, M. H., & Sandi, T. K. (2021). Implementasi K-Means Clustering pada Online Retail berdasarkan Recency, Frequency, dan Monetary (Implementation of K-Means Clustering in Online Retail based on Recency, Frequency, and Monetary).
Smaili, M. Y., & Hachimi, H. (2023). New RFM-D Classification Model for Improving Customer Analysis and Response Prediction.
Statista. (2024, May 14). Number of Users of E-commerce in Indonesia from 2020 to 2029. Statista.Com.
Supoyo, A., & Prasetyaningrum, P. T. (2022). Analisis Data Mining Untuk Memprediksi Lama Perawatan Pasien Covid-19 Di DIY.
Tsiptsis, K., & Chorianopoulos, A. (2010). Data Mining Techniques in CRM: Inside Customer Segmentation. Wiley