The effect of TAM factor on behavioral intention to use (dashboard property management Ciputra SH3A)

##plugins.themes.academic_pro.article.main##

Amelia Chandra
Hermeindito Hermeindito
Hermeindito Hermeindito

Abstract

This study aims to determine the influence between variables on the role of technology utilization in the use of property management dashboards with the Technology Acceptance Model (TAM) Factor theory approach introduced by Davis (1989) on the influence of perceived usefulness, perceived ease of use, and trust of security to see how user intention (behavioral intention to use) influences the use of property management dashboards at Ciputra SH3A as actual system use. This type of research is quantitative research using SmartPLS 3.0 software and data collection techniques in research through online questionnaires on a saturated sample of 60 respondents who are all users of the property management dashboard with a Likert scale range of 5. The results of this study indicate that all independent variables (perceived usefulness, perceived ease of use and trust of security) have a significant positive effect on the dependent variable (behavioral intention to use), where the variable perceived ease of use has the greatest effect on behavioral intention to use in using the property management dashboard at Ciputra SH3A

##plugins.themes.academic_pro.article.details##

How to Cite
Chandra, A., Hermeindito, H., & Hermeindito, H. (2024). The effect of TAM factor on behavioral intention to use (dashboard property management Ciputra SH3A). Enrichment : Journal of Management, 14(3), 488-498. https://doi.org/10.35335/enrichment.v14i3.1959

References

Adi Permana. (2020, October). Pemanfaatan data dalam proses pengambilan keputusan di era digital. Sekolah Bisnis dan Manajemen Institue Teknologi Bandung. https://www.itb.ac.id/news/read/57625/home/pemanfaatan-data-dalam-proses-pengambilan-keputusan-di-era-digital
Agung Ayu Puty Andrina, A., Jordan Kurniadi, C., Hendrika Kenang, I., & FCW Sutrisno, T. (2022). The role of technology acceptance model factors on purchase intention in e-commerce. BISMA (Bisnis Dan Manajemen), 14(2). https://doi.org/10.26740/bisma.v14n2.p160-176
Christian, Wijangga, H., & Christian, B. (2022). Analisa faktor minat penggunaan aplikasi pedulilindungi anak muda surabaya dengan metode tam. ZONAsi: Jurnal Sistem Informasi, 4(2), 1–10. https://doi.org/10.31849/zn.v4i2.10078
Damanik, D. D., & Tanamal, R. (2022). Penggunaan Online Learning Tools di Universitas Ciputra Pada Masa Pandemi Covid. Journal of Economic, Management, Accounting and Technology, 5(1), 1–8. https://doi.org/10.32500/jematech.v5i1.1844
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008
Deananda, A., Budiastuti, P., & Muid, D. (2020). Diponegoro journal of accounting analisis faktor-faktor pengaruh minat penggunaan sistem informasi akuntansi berbasis e-commerce pada aplikasi shopee dengan menggunakan technology acceptance model (tam). Diponegoro journal of accounting , 9(4).
Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis, 5th ed. In Technometrics.
Hair, J. F., Babin, B. J., & Krey, N. (2017). Covariance-Based Structural Equation Modeling in the Journal of Advertising: Review and Recommendations. Journal of Advertising, 46(3), 454–454. https://doi.org/10.1080/00913367.2017.1329496
Imam Ghozali. (2016). Aplikasi Analisis Multivariete Dengan Program IBM SPSS 23 (8th ed.). Universitas Diponegoro.
Jonathan Susanto. (2016). Analisis faktor-faktor yang mempengaruhi adopsi aplikasi go-jek sebagai penyedia jasa transportasi di surabaya. Universitas Ciputra. https://dspace.uc.ac.id/handle/123456789/5112
Joseph F. Hair, William C. Black, Barry J. Babin, & Rolph E Anderson. (2011). Multivariate Data Analysis (5th ed.). PrenticeHall, Inc.
Kucukusta, D., Law, R., Besbes, A., & Legohérel, P. (2015). Re-examining perceived usefulness and ease of use in online booking. International Journal of Contemporary Hospitality Management, 27(2): 185–198. The Eletronic Library, 27(2).
Liu, C., Marchewka, J. T., Lu, J., & Yu, C.-S. (2005). Beyond concern—a privacy-trust-behavioral intention model of electronic commerce. Information & Management, 42(2), 289–304. https://doi.org/10.1016/j.im.2004.01.003
Preiser, W. F. E. (2005). Building Performance Assessment—From POE to BPE, A Personal Perspective. Architectural Science Review, 48(3), 201–204. https://doi.org/10.3763/asre.2005.4826
Rahmawati, R. N., & Narsa, I. M. (2019). Intention to Use e-Learning: Aplikasi Technology Acceptance Model (TAM). Owner, 3(2). https://doi.org/10.33395/owner.v3i2.151
Sarstedt, M., Ringle, C. M., & Hair, J. F. (2017). Partial Least Squares Structural Equation Modeling. Handbook of Market Research. In Handbook of Market Research (Issue September).
Soedewa, J. L., Febry, T., & Soetedja, V. (2022). Hubungan TAM Factors dan Social Factors terhadap Attitude Towards Mobile App Use dan Intention to Purchase. PERFORMA, 6(6). https://doi.org/10.37715/jp.v6i6.2113
Sutrisno, T. (2023). The effect of tam factor on repurchase intention (go-pay digital wallet case study). JMBI UNSRAT (Jurnal Ilmiah Manajemen Bisnis Dan Inovasi Universitas Sam Ratulangi)., 10(1), 181–197. https://doi.org/10.35794/jmbi.v10i1.47483
Tirta Loanata, & Kartika GianinaTileng. (2016). Pengaruh trust dan perceived risk pada intention to use menggunakan technology acceptance model (studi kasus pada situs e-commerce traveloka). Juisi Jurnal Informatika Dan Sistem Informasi, 2.
Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540
Venkatesh, V. (2000). Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model. Information Systems Research, 11(4). https://doi.org/10.1287/isre.11.4.342.11872
Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Sciences, 39(2), 273–315. https://doi.org/10.1111/j.1540-5915.2008.00192.x
Venkatesh, V., & Davis, F. D. (2000). Theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science, 46(2). https://doi.org/10.1287/mnsc.46.2.186.11926
Viswanath, V., Cheri, S., & Michael, G. M. (2002). User acceptance enablers in individual decision making about technology: Toward an integrated model. Decision Sciences, 33(2).
Wilson, N., Alvita, M., & Wibisono, J. (2021). The effect of perceived ease of use and perceived security toward satisfaction and repurchase intention. Jurnal Muara Ilmu Ekonomi Dan Bisnis, 5(1), 145. https://doi.org/10.24912/jmieb.v5i1.10489
Wolfgang Preiser, & Jacqueline Vischer. (2006). Assessing Building Performance (W. Preiser & J. Vischer, Eds.). Routledge. https://doi.org/10.4324/9780080455228
Wynne W. Chin. (1998). The Partial Least Squares Aproach to Structural Equation Modeling. Modern Methods for Business Research. https://doi.org/https://www.researchgate.net/publication/311766005_The_Partial_Least_Squares_Approach_to_Structural_Equation_Modeling